Практикум по курсу «Основы математического моделирования». М. Д. Малых

Задание 1. Численное решение краевых задач и задач на собственные значения при помощи среды PDE Toolbox при пакете MatLab 6.5.

1.1. Введение. Среда PDE Toolbox при пакете MatLab 6.5 предназначена для численного решения задач математической физики при помощи метода конечных элементов. Эта среда позволяет решать все типы задач математической физики:

1. Эллиптические уравнения вида

$$-\nabla(c\nabla u) + a u = f,$$

где a, b и f – произвольные функции, в произвольной двумерной области Ω , на границе которой можно ставить

• условие Дирихле вида h u = r (здесь h u r - произвольные функции)

• обобщенное условие Неймана ($n, c \nabla u$) + q u = g (здесь n – нормаль к границе Ω , а q и r – произвольные функции)

2. Параболические уравнения вида

$$d u_t - \nabla (c \nabla u) + a u = f,$$

где *a*, *b*, *d* и *f* – произвольные функции, в произвольной области $\Omega \times [0,T]$ с граничными условиями Дирихле или Неймана и начальным условием $u = u_0(x)$ при t = 0.

 $u u_0(x)$ при i = 0.

3. Гиперболические уравнения вида

 $d u_{tt} - \nabla (c \nabla u) + a u = f,$

где *а*, *b*, *d* и *f* – произвольные функции, в произвольной области $\Omega \times [0,T]$ с граничными условиями Дирихле или Неймана и начальным условием

 $u = u_0(x), \quad u_t = u_1(x) \quad \text{при} \ t = 0.$

4. Задачи на собственные значения вида

 $-\nabla(c\nabla u) + a u = \lambda d u,$

где *а*, *b*, *d* – произвольные функции, в произвольной двумерной области с граничными условиями Дирихле или Неймана.

Графический интерфейс среды PDE Toolbox позволяет задавать двумерную область Ω путем ее рисование в редакторе, подобном Paintbrush, а функции *a*, *b*,... - аналитическими формулами. При этом предусмотрена возможность задания этих функций различными формулами в различных подобластях Ω .

В настоящем первом задании практикума предложено по аналогии с разобранным примером решить численно одну из задач, приведенных в «Задачах по математической физики» А.Н. Боголюбова и В.В. Кравцова. Полный перечень назначения элементов управления PDE Toolbox и описание реализуемых численных методов содержится в документации [1], поставляемой вмести с MatLab (обычно, файл pde.pdf). Описание работы PDE Toolbox на руссом языке имеется в книге И.Е. Ануфриева «Самоучитель MatLab 5.3-6.х» [2]. Однако, как видно из рассмотренного примера, назначение подавляющего большинства из них очевидна. **1.2. Тестовый пример.** Для того, чтобы освоиться с работой в среде PDE Toolbox при пакете MatLab 6.5, рассмотрим простой пример эллиптической граничной задачи:

$$\begin{cases} \Delta u - 16(x^2 + y^2) = 0, \\ u \mid_{\partial \Omega} = 1 \end{cases}$$

Пусть рассматриваемая область Ω представляет собой круг единичного радиуса с центром в начале координат.

Для численного решения этой задачи вызовите пакет MatLab 6.5 из меню Пуск Windows. Перед вами появится главное окно пакета MatLab 6.5:

Наберите в командной строке, отмеченной символом >>, слово pdetool. После этого появится окно среды Pde Toolbox:

4 PDE Toolbo	ox - [Untitled]						_ 🗆 ×
<u>File</u> <u>E</u> dit <u>O</u> pt	ions D <u>r</u> aw <u>B</u> Collocale	oundary P <u>D</u> E	Mesh Sol	ve <u>P</u> lot <u>V</u>	⊻indow <u>H</u> elp		
	<u>106 4 (±</u>			GenericS	Scalar	▼ X: 0.0	Y: U.U
Sectormula.							
	1			1	1	1	
0.8 -							-
0.6 -							-
0.4 -							-
0.2 -							-
0-							-
-0.2 -							-
-0.4 -							-
-0.6 -							-
-0.8 -							-
1	I			1	I	I	
-1.5	-1	-0	.5	0	0.5	1	1.5
Info:	Draw 2-D geon	netry.					Exit

Ввод условий задачи осуществляется в три этапа:

 Задание двумерной области Ω, в которой будет решаться краевая задача осуществляется примерно также, как в любом графическом редакторе. В данном случае нажмите кнопку, на которой нарисован эллипс с плюсом по средине, и при помощи мыши нарисуйте эллипс примерно похожий на наш единичный круг. Затем дважды щелкните по нему мышью, тогда появится диалоговое окно с параметрами эллипса:

🜗 Object Dialog			
Object type:	Ellipse		
X-center:	-0.013740458015267354		
Y-center:	-0.096183206106870367		
A-semiaxes:	0.86106870229007626		
B-semiaxes:	0.89312977099236668		
Rotation (degrees):	0		
Name:	E1		
ОК	Cancel		

Исправьте их так, чтобы получился наш круг.

 Задание граничного условия. Нажмите кнопку ∂Ω, тогда граница круга выделится красным. Это означает, что на границе заданы условия Дирихле u = 0 (такой выбор сделан по умолчанию). Для их смены на наше условие u = 1, зайдите в меню Boundary и выберете пункт Specify Boundary Condition. Перед вами появится окно:

🛃 Boundary Condition 📃 🗖 🗙						
Boundary condition equa	tion: h*u	=r				
Condition type:	Coefficient	Value		Description		
C Neumann	g	0				
Oirichlet	q	0				
	h	1				
	r	0				
	OK		Can	cel		

Исправьте в строке г значение 0 на 1.

3. Задание уравнения. Зайдите в меню PDE и выберете пункт Specify PDE. Перед вами появится окно:

A PDE Specification			_ 🗆 ×
Equation: -div(c*grad	(u))+a*u=f		
Type of PDE:	Coefficient	Value	
 Elliptic 	с	1.0	
C Parabolic	a	0.0	
C Hyperbolic	f	10.0	
C Eigenmodes	d	1.0	
[ОК	Cancel	

Вы видите, что по умолчанию решается уравнение $\Delta u - 10 = 0$. Исправьте в строке *f* значение 10 на -16* (х.^2+у.^2). Обратите внимание на характерные особенности обозначения операций в MatLab.

Задав условия задачи, нажмите кнопку = для получения решения. В результате вы получите график приближенного решения:

Сравните его с точным $u = (x^2 + y^2)^2$, построив их разность в области. Для этого нажмите кнопку, на которой изображен график некоторой поверхности. Перед вами появится окно:

4 Plot Selection			_ 🗆 ×
Plot type:	Property:	User entry:	Plot style:
Color	u 💌		interpolated shad.
C Arrows	-grad(u)		proportional 💌
🗖 Deformed mesh	-grad(u)		
🗖 Height (3-D plot)	u 💌		continuous 💌
Animation	Options		
☐ Plot in x-y grid	Contour plot levels: 20	Plot so	lution automatically
☐ Show mesh	Colormap: cool	~	
Pic	otDc	ine	Cancel

Верхняя панель этого окна организована в виде таблицы, левая колонка которой содержит флаги, соответствующие способу визуализации результатов. Столбик Property состоит из раскрывающихся списков, предназначенных для выбора отображаемой функции. Зайдите в список, соответствующей строке Color (и Contour) и выберете вместо пункта u пункт User Entry. Тогда станет доступна соответствующая ячейка третьей колонки. Введите в нее функцию u-(x.^2+y.^2).^2:

📣 Plot Selection			_ 🗆 ×
Plot type:	Property:	User entry:	Plot style:
Color	user entry	u-(x.^2+v.^2).^2	interpolated shad.
Contour	,	, , , ,	,,
Arrows	-grad(u) 💌		proportional 🗨
Deformed mesh	-grad(u) 💌		
🗖 Height (3-D plot)	u 💌		continuous 💽
Animation	Options		
🗖 Plot in x-y grid	Contour plot levels: 20	Plot so	lution automatically
🗖 Show mesh	Colormap: cool	~	
Pla	ot Do	ne	Cancel

Далее нажмите кнопку Plot для вывода графика погрешности.

Следует отметить, что нажатие кнопки Δ , приводит к отображению используемой триангуляции области. Следующая за ней кнопка позволяет увеличить разбиение. Меню Mesh позволяет внести и другие изменения.

Рассмотрим теперь более интересный пример.

1.3. Поле скоростей установившегося течения идеальной жидкости.

1.3.1. Задача об обтекании цилиндра. Поле скоростей установившегося течения идеальной жидкости в канале постоянной ширины утроено весьма просто: это – постоянный вектор, направленный вдоль канала. Будем считать, что канал имеет бесконечную высоту, и поместим внутрь его бесконечный цилиндр произвольного сечения, тогда течение примет вид:

(Здесь цветом обозначены значения и.)

Найдем теперь, какой краевой задаче удовлетворяет поле скоростей v при движении несжимаемой жидкости. Будем считать течение потенциальным, то есть что можно ввести скалярный потенциал u, такой, что $v = \nabla u$. Тем самым мы исключаем из рассмотрения вихри. Из условия несжимаемости жидкости div v = 0 следует уравнение

div grad
$$u = \Delta u = 0$$
,

то есть потенциал и оказывается гармонической функцией.

Граничные условия можно найти из следующих соображений: поскольку поток не проникает сквозь стенки канала и цилиндра, то

$$(\mathbf{n}, \mathbf{v}) = (\mathbf{n}, \nabla \mathbf{u}) = 0$$

на этих стенках. Для того, чтобы сделать рассматриваемую область конечной, рассмотрим два сечения канала: до и после цилиндра, напр., x = -5 и x = 5, как на рисунке. Из физических соображений ясно, что на большом расстоянии от цилиндра его присутствие не должно ощущаться, то есть если разнести эти сечения достаточно далеко, то поле в них примерно имеет вид v_0e_x .

Таким образом, потенциал *и* в области Ω между этими сечениями удовлетворяет следующей краевой задаче:

 $\Delta u = 0$,

 $(n, \nabla u) = 0$ на границе канала и цилиндра,

 $(n, \nabla u) = (n, e_x)v_0$ на границе сечений.

Решение этой задачи единственно (см., напр., [3]), и может быть получено при помощи PDEtool.

Постройте самостоятельно векторное поле в случае обтекания цилиндра более сложной формы. Убедитесь, что в более узких местах несжимаемая жидкость течет быстрее. Заметьте еще, что $v = \nabla u$ не обращается в нуль во внутренних точках области Ω , а, следовательно, u не только не достигает внутри рассматриваемой области максимальных и минимальных значений (что утверждает принцип максимума), но и вообще не имеет экстремумов.

Замечание. В отличие от предыдущей задачи, теперь придется задавать различные граничные условия на различных участках границы. Для этого после нажатия кнопки $\partial \Omega$ следует как и раньше зайти в меню Boundary\Specify Boundary Condition. В появившемся окне следует задать условия Неймана:

Boundary Condition					_ 🗆 ×
Boundary condition equa	tion: n*c	*grad(u)+qu=g			
Condition type:	Coefficient	Value		Description	
Neumann	g	0			
C Dirichlet	q	0]	
	h	1		J	
	r	0			
	OK		Can	cel	

В результате этого вся граница перекрасится из красного цвета в синий, указывая тем самым, на то, что поставлены условия $(n, \nabla u) = 0$. Остается исправить граничные условия на сечениях $x = \pm 5$. Для этого следует повести курсор мыши к сечению x = -5 и щелкнуть по нему мышью, тогда он выделится черным. Теперь следует опять зайти в меню Boundary\Specify Boundary Condition и заменить в строке g значение 0 на соответствующее значение $-v_0$ (на рис. $v_0 = 1$). Аналогично следует поступит с сечением x = 5.

1.4.2. Течение в изогнутой трубе может быть рассмотрено аналогичным образом, что позволит построить его поле скоростей:

Следует обратить внимание на то, что в окрестности входящего угла потенциал ограничен, однако его производные имеют степенную особенность, что хорошо видно на графике $|\nabla u|$:

Этим и объясняется несколько не красивое поведение поля *v*, изображенное на предыдущем рисунке.

Отметим еще, что решение данной задачи можно найти явно при помощи конформных преобразований (см. [4], § 2.2.1. и Атлас 4, № 14).

Литература.

- 1. Partial differential equation user's guide. MathWorks, 2002.
- 2. Ануфриев И.Е. Самоучитель MatLab 5.3-6.х. СП-б., БХВ-Петербург, 2002.
- 3. Боголюбов А.Н., Кравцов В.В. Задачи по математической физике. М.: МГУ, 1998.
- 4. Иванов В.И., Попов В.Ю. Конформные отображения и их применения. М.: Физич. ф-т, 2000